
Eur. Phys. J. D 19, 403–410 (2002)
DOI: 10.1140/epjd/e20020088 THE EUROPEAN

PHYSICAL JOURNAL D
c©

EDP Sciences
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Abstract. We study theoretically and experimentally different methods to control the pulses emitted by
solid-state lasers passively Q-switched by a saturable absorber. We explore one- and two-axis laser schemes
allowing to control the pulse duration, which is ruled by the saturation powers of the transitions in the
absorber and in the gain medium. In one-axis lasers, it is shown that the adjustment of the pump and
laser beam sizes in the active medium and in the absorber provides an efficient means to control the pulse
temporal shape and duration. Furthermore, a two-axis laser cavity supporting so-called forked-eigenstate
operation permits to freely adjust the parts of the mode power which circulate in the gain medium and in
the absorber. In this case, a lengthening of the pulse duration up to 500 ns is obtained with an increase
of the average output power. The theoretical results obtained by using rate equations adapted to each
cavity geometry are in close agreement with experiments performed on a diode-pumped Nd3+:YAG laser
Q-switched by a Cr4+:YAG saturable absorber. The relevance of the different techniques to control the
pulse durations in the framework of potential applications is discussed.

PACS. 42.55.Ah General laser theory – 42.60.Gd Q-switching – 42.55.Rz Doped-insulator lasers
and other solid state lasers

1 Introduction

Diode-pumped solid-state lasers passively Q-switched by
saturable absorbers are compact and rugged sources
of pulsed radiation suited to a wide range of applica-
tions [1–7]. The main characteristics of the emitted pulses
are their duration, peak power, and repetition rate. While
the latter is adjustable simply by choosing the pump
power, the pulse duration and peak power are known to
be ruled by the parameters of the gain medium, the ab-
sorber, and the cavity [8]. They are thus essentially fixed
by laser construction. For applications requesting the con-
trol and adjustment of the pulse temporal shape, such
as, e.g., range finders, only active systems have yet been
studied [9,10]. However, theoretical descriptions of pas-
sively Q-switched lasers show that the pulse duration and
shape rely on the ratio R of the saturation power in the
gain medium to the saturation power in the absorber [8,
11–13]. One can hence wonder how to introduce an extra
degree of freedom in the laser which would allow a contin-
uous control of the parameter R, and consequently of the
shape of the pulses. The first path one can follow consists
in questioning how the pulse duration can be affected by
the pump and laser mode sizes. On the one hand, the rel-
ative internal laser mode sizes in the gain medium and in
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the absorber can be varied. On the other hand, the exter-
nal pump mode size can be changed in the gain medium,
as suggested by a recent theoretical study [13]. Besides,
a technique permitting to change artificially the ratio R
can be explored, when two-axis lasers oscillating on forked
eigenstates are considered [14,15]. Indeed, in this case, the
electromagnetic field experiences a spatial separation in
one part of the cavity. One may hence question the possi-
bilities of such a scheme to control the powers circulating
in the gain medium and in the absorber.

To address these different points, we choose the fol-
lowing plan. In Section 2, we first explore a theoretical
model based on rate-equations of a single-axis laser to
study the effect of the variations of R on the pulse du-
ration. The predictions of the model are then compared
with experiments made with a Nd:YAG laser passively
Q-switched by a Cr:YAG saturable absorber. In order to
isolate the roles played by the active medium and absorber
saturation powers, we use two different cavity geometries.
On the one hand, we vary the ratio wA/wG of the laser
mode radius in the saturable absorber to the laser mode
radius in the gain medium. On the other hand, we vary
the ratio wP/wG of the pump mode to laser mode radii
inside the gain medium. In Section 3, we extend the rate-
equation model to the case of a two-axis laser containing
a double-refraction crystal and a quarter-wave plate. The
predictions are then tested experimentally on a two-axis
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laser cavity supporting forked-eigenstate operation with
the gain and absorber media placed in separate arms of
the cavity. Finally, the experimental results obtained us-
ing the different scenarios to control the pulse duration
are summarized and compared in Section 4. The possibil-
ities offered by these methods as regards to applications
are discussed.

2 Single axis laser: control by the mode sizes

Let us first consider the laser depicted in Figure 1a. The
resonator has a length L and is closed by two mirrors M1

and M2. It contains an isotropic solid-state active medium
and a saturable absorber. It is longitudinally pumped by a
cw laser diode. When the pumping yields enough popula-
tion inversion in the gain medium to overcome the unsat-
urated losses (first threshold), the photon number grows
at a rate which depends not only on the photon round-trip
time but also on the rate at which the absorber and the
gain medium saturate. Indeed, if the saturable absorber is
fully bleached before the gain reaches its saturated value
(the so-called “second threshold” condition [8]), a giant
pulse is emitted. This well-known behavior may be mod-
eled by a set of scalar rate-equations for three variables:
the intracavity power, the upper level population of the
laser transition and the absorption in the saturable ab-
sorber [16]. In order to match the experimental conditions
presented in the following, we add to these usual variables
the lower level of the laser transition, which happens to
have a finite lifetime [17,18]. We also take into account
the absorption of the saturable absorber in its excited-
state [19–21]. Finally, the laser is assumed to oscillate
in one linearly polarized eigenstate only. Consequently,
the laser behavior is governed by the following differen-
tial equations:

dI
dt

= −
[
Γ + a+ (a0 − a)

σESA

σGSA

]
I

+ κ(nu − nd)I + κnuε, (1a)
dnu

dt
= γu(P − nu)− ζ(nu − nd)I − ζnuε, (1b)

dnd

dt
= γunu − γdnd + ζ(nu − nd)I + ζnuε, (1c)

da
dt

= γa(a0 − a)− µaI, (1d)

where I is the intracavity laser power, nu and nd are the
populations of the upper and lower levels of the laser tran-
sition, respectively, a is the saturable absorption, Γ is the
cavity decay rate, κ and ζ are ion/field coupling coeffi-
cients in the active medium, ε is a small heuristic term
which holds for the spontaneous emission, γu and γd are
the relaxation rates of the upper and lower laser levels, re-
spectively, P is the pumping rate normalized to the upper
level decay rate, γa is the relaxation rate of the saturable
absorption, a0 is the small-signal (unsaturated) absorp-
tion, σGSA and σESA are the ground-state and excited-
state absorption cross-sections of the saturable absorber,

Fig. 1. Experimental arrangement of the one-axis laser:
Nd:YAG, active medium; Cr:YAG, saturable absorber; L1,
L2, focusing lenses; M1, plane mirror; M2, concave mirror.
(a) Translation of the absorber; (b) translation of the focusing
lens.

respectively. The ratio R of the saturation power in the
gain medium to the saturation power in the absorber is
related to the ion/field coupling coefficients µ and ζ in
the saturable absorber and in the gain medium, respec-
tively, by:

R =
γu

γa

µ

ζ
· (2)

In the following, we investigate the Q-switching mecha-
nism when R is varied. With the parameters given by
the experiments as specified below, and with the fol-
lowing parameters which are common to all the experi-
ments: σESA/σGSA = 0.27, 1/γu = 230 µs, 1/γd = 10 ns,
κ = ζ = 1, 1/γa = 4 µs, ε = 10−20, the laser behavior is
obtained by a numerical integration of equations (1) using
a fourth-order Runge-Kutta algorithm [22].

2.1 Translation of the absorber

We first choose to change the ratio R by varying the beam
section area in the absorber while keeping the beam waist
in the gain medium unchanged. Experimentally, this is
obtained simply by translating the absorber along the
propagation axis of the laser cavity, as depicted in Fig-
ure 1a. M1 is highly transmitting (T1 > 95%) at 808 nm
and highly reflecting (R1 > 99.5%) at 1 064 nm. It is di-
rectly coated on the active medium which is a 1.1 mm
long crystal of 1 at.% doped Nd:YAG. The output cou-
pler M2 (transmission T2 = 1% at 1 064 nm) is a spheri-
cal mirror of 100 mm radius of curvature. The saturable
absorber is a 1 mm long antireflection coated Cr4+:YAG
plate. It is [100]-cut and its small-signal power transmis-
sion at 1 064 nm is 90%. For this case, the laser is pumped
by a 800 mW fiber-coupled laser diode emitting at 808 nm.
The end of the fiber is simply butted against the Nd:YAG
crystal. The cavity length is chosen equal to 90 mm in
order to be able to move the saturable absorber inside
the cavity. Owing to this cavity geometry, the laser beam
radius increases from 100 µm at its waist on mirror M1
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Table 1. Laser parameters used for simulations in the three
cases corresponding to cavities depicted in Figures 1a, 1b,
and 4.

Parameters Units Figure 1a Figure 1b Figure 4

Γ s−1 5.0 × 107 28.5 × 107 5.0× 107

a0 s−1 3.5 × 108 18.1 × 108 3.5× 108

φ (◦) n/a n/a 5.7

R varies varies 0.05

ρ (◦) n/a n/a varies

Fig. 2. Pulse width versus 1/R and wA/wG obtained by
translation of the absorber. Open squares: simulation results;
filled squares: experimental result. The horizontal scales are re-
lated by 1/R = 3.46(wA/wG)2. Inset: measured average output
power versus pulse width.

to 320 µm on mirror M2. When the Cr4+:YAG plate is
placed against the active medium, this laser emits a train
of Q-switched pulses of 38 ns full-width at half-maximum
at a 11 kHz repetition rate. It oscillates in a single longi-
tudinal mode and its average output power is measured
to be 20 mW. Using the experimental parameters (given
in Tab. 1) and with R = 0.12, the computation of the
differential equations yields a train of Q-switched pulses
emitted at a repetition rate of 10 kHz with a pulse width of
33 ns, close to the experimental value. We further explore
the variations of the pulse parameters as the ratio R is
varied. If now R decreases, the relative intensity in the ab-
sorber is expected to decrease. As a result, the stimulated
emission process is slowed and the pulse width increases.
It is hence expected that lower values of R lead to longer
pulses (slow Q-switching regime). Indeed, when R is var-
ied from 0.12 to 0.018, the simulation yields pulse widths
increasing from 33 ns to 350 ns, as shown in Figure 2.
Moreover, we obtain theoretical repetition rates ranging
from 10 kHz to 71.5 kHz.

As the ratio R corresponds to the ratio of saturation
powers in the gain medium and in the absorber, it should
be proportional to the square of the beam section area. To
check this prediction, we change experimentally the beam
section area in the saturable absorber by translating the
Cr4+:YAG plate along the laser axis, while keeping the
beam waist in the gain medium unchanged. We then ob-

serve that the pulse duration is increased by a factor of 8.7
while the ratio wA/wG increases by a factor of 2.7. This is
also shown in Figure 2 to compare with the simulations.
As shown in this figure, the pulse width is stretched from
38 ns to 350 ns, in agreement with the theoretical results.
The relation 1/R = 3.46(wA/wG)2 is found to lead to a
good agreement between the experimental and theoreti-
cal results. The experimental repetition rates range from
11 kHz to 71 kHz, also in good agreement with the model.
Finally, we find both theoretically and experimentally that
the average output power decreases monotonously when
the pulse width increases, as shown in the inset of Fig-
ure 2.

Using this usual laser cavity set-up, it is demonstrated
that the pulse duration can be changed by varying wA/wG.
This is reproduced by the rate-equations model simply
by a variation of the ratio R. But, in cases where the
mode radius is almost constant in the laser cavity, as in
microchip lasers for instance, this internal degree of free-
dom used above disappears. However, an external degree
of freedom may be found. Indeed, by tightly focusing the
pump beam inside the active medium, it is possible to
achieve a high population inversion density at the cen-
tre of the laser beam, leaving the beam edges without
gain. One can then expect the effective saturation power
in the active medium to be lower than in the case where
the population inversion is homogeneous across the laser
beam [13,23,24].

2.2 Translation of the focusing lens

To investigate this external control, we use the short cav-
ity configuration of Figure 1b. M2 (transmission T2 = 1%
at 1 064 nm) is a spherical mirror of 200-mm radius of
curvature. The saturable absorber is a 1-mm long antire-
flection coated Cr4+:YAG plate whose small-signal inten-
sity transmission at 1 064 nm is 85%. The cavity length
is reduced to 27 mm and the saturable absorber is placed
against the active medium. In this case, the laser mode
radius wG is experimentally measured to be 120 µm. In
order to change the pump mode radius wP in the active
medium, the pump beam (150 µm fibre core diameter)
is first collimated by the lens L1 (microscope objective
with 10× magnification) and then focused in the active
medium by the lens L2 (microscope objective with 63×
magnification). In a first step, the pump mode radius in
the active medium is set at 270 µm, i.e., larger than the
laser mode waist. In this case, the pulse full-width at
half-maximum is 18 ns and the repetition rate is 2 kHz
for a pump power of 800 mW. It oscillates in a single
longitudinal mode and its average output power is mea-
sured to be 0.6 mW. Integration of equations (1) using
the experimental parameters for this cavity (see Tab. 1)
yields the results shown in Figure 3a. When 1/R = 12.5,
a train of pulses is obtained at a repetition rate of 2 kHz,
with a pulse duration of 11 ns, close to the experimental
value. It is then predicted that, by varying 1/R from 12.5
to 40, the pulse duration increases from 11 ns to 310 ns,
and the repetition rate increases from 2 kHz to 70 kHz.
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Fig. 3. Results obtained by translation of the focusing lens.
(a) Theoretical pulse width versus 1/R. (b) Measured pulse
width versus pump beam radius. Inset: measured average out-
put power versus pulse width.

To obtain experimentally the corresponding variation of
the saturation powers ratio, we simply change wP by mov-
ing the position of L2 along the laser axis up to the
position where the pump beam focus matches the laser
medium position. Due to the focusing of the pump beam
after L2 (about 15◦), we observe that the pump-mode ra-
dius is decreased from 270 µm to 40 µm. This tighter fo-
cusing of the pump beam increases the pulse width from
18 ns to 240 ns, as shown in Figure 3b. At the same time,
the repetition rate increases from 2 kHz to 67 kHz and the
average power of the laser decreases to 1.3 mW for long
pulses, as shown in the inset of Figure 3b. These exper-
imental observations show that a variation of the pump
mode in the active medium indeed changes the saturation
power of the laser mode in the active medium. Note that
here the variations of R may not be directly related to
the ratio wP/wG. However, this simple model correctly
predicts the tendencies followed by the pulse parameters.
Namely, it yields correct values for the pulse lengths, in-
cluding the presence of the experimentally observed ex-
tremum. The similarity between the model and the ex-
perimental values confirms that the external focusing of
the pump beam gives access to the saturation power ratio
governing the Q-switching dynamics.

We have thus shown theoretically and experimentally
in this section two techniques, an internal one and an ex-

Fig. 4. Experimental arrangement of the forked eigenstate
laser: Nd:YAG, active medium; Cr:YAG, saturable absorber;
M1, plane mirror; M2, concave mirror; C, birefringent crystal;
φ, phase retardance of C; QWP, quarter-wave plate; ρ, angle
between the fast axis of QWP and the x-axis; D, diaphragm.

ternal one, to control the pulse duration by one order of
magnitude. In both cases, it is also shown that we can ob-
tain longer pulse durations at the expense of a loss in the
average output power. Indeed, as R is decreased (slow Q-
switching regime), (i) more gain is wasted to saturate the
absorber, leading to a lower peak power, and (ii) the popu-
lation inversion at the end of the pulse is higher, leading to
a higher repetition rate. As a result, the overall efficiency
is decreased. In the following section, we focus on a laser
geometry where we wish to control accurately the powers
circulating in the active medium and in the absorber, in
an attempt to maintain a high power efficiency. This leads
us to a two-axis laser cavity, as is now described.

3 Forked-eigenstate laser

The so-called forked eigenstate consists in a laser mode
which is simultaneously oscillating on several parallel
beams [14,15]. A two-axis configuration suggests that, if
the active medium and the saturable absorber are placed
in the two different arms, one can control the relative
amounts of power of the mode in the active medium and
in the absorber. The model used in the preceding section
has to be extended however, in order to take the two-axis
geometry into account. To this aim, we use the spatially
generalized Jones matrix analysis [14].

3.1 Theoretical model

Consider the laser cavity of Figure 4. Its propagation axis
is z. It is closed by two mirrors M1 and M2 and con-
tains an isotropic active medium. A birefringent crystal C
cut at 45◦ of its optical axis is inserted inside the cavity.
This birefringent element (retardance φ) separates spa-
tially the ordinary (y) and the extraordinary (x) polar-
izations inside the cavity. The polarization walk-off which
separates the two beams between M1 and C is∆x = 1 mm.
The two eigenaxes are superimposed between C and the
output coupler, as warranted by the diaphragm D. The
saturable absorber is inserted in the extraordinary arm
only. The laser is pumped by a fiber-coupled laser diode
emitting at 808 nm. The end of the fiber is simply but-
ted against the active medium in the region of the or-
dinary arm. To impose the forked-eigenstate oscillation,
i.e., one mode oscillating simultaneously in the two arms,
we insert the quarter-wave plate QWP inside the cavity.
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This quarter-wave plate can be rotated around the z-axis
with an angle ρ between its fast axis and the x-axis. De-
pending on the orientation of this plate, the powers circu-
lating in the two separated arms of the laser may change.

3.1.1 Calculation of the cold-cavity eigenstates

In view of calculating these powers, let us recall that, in a
two-propagation-axis laser, one must use 4×4 generalized
Jones matrices to take into account the transverse shift
between the ordinary and extraordinary beams [14,15]. In
order to derive first the stationary eigenstates of such a
laser, one has to solve the following eigenproblem:

M4E1 = λE1, (3)

where M4 is the overall Jones matrix for one round trip
inside the cavity starting from M1,

E1 =

ETxETy
EBx
EBy

 (4)

is the electromagnetic field four-component eigenvector
on M1 and λ is the associated eigenvalue. The two up-
per terms of these vectors correspond to the x- and y-
polarized components of the electromagnetic field propa-
gating in the extraordinary arm (top arm), and the two
lower terms correspond to the x- and y-polarized com-
ponents of the electromagnetic field propagating in the
ordinary arm (bottom arm). The 4× 4-Jones matrix M4

is given by:

M4 = GBAG, (5)

where A and B are the 4 × 4-Jones matrices for the for-
ward and backward one-way propagation inside the cav-
ity, respectively, and G holds for the gain and absorption
media:

G =

 ta 0 0 0
0 ta 0 0
0 0 tg 0
0 0 0 tg

 · (6)

With the same notations as in equations (1), the gain and
absorption transmission coefficients tg and ta read:

tg = exp
[
L

2c
κ(nu − nd)

]
, (7)

ta = exp
{
− L

2c

[
a+ (a0 − a)

σESA

σGSA

]}
· (8)

The matrices A and B are given by:

A =
√
R1 exp(ikL)

√
T D L(ρ)C+, (9)

B =
√
R2 exp(ikL)

√
T C− L(ρ)D, (10)

where R1 and R2 are the intensity reflection coefficients
of mirrors M1 and M2, respectively, and T holds for the
intracavity losses. The generalized Jones matrices of the
intracavity birefringent crystal for the +z and −z direc-
tions are given by:

C+ =


0 0 0 0
0 e−iφ/2 0 0

eiφ/2 0 0 0
0 0 0 e−iφ/2

 (11)

and

C− =


0 0 eiφ/2 0
0 e−iφ/2 0 0
0 0 0 0
0 0 0 e−iφ/2

 , (12)

respectively, where φ is the retardance introduced by the
birefringent crystal. The generalized Jones matrices for
the intracavity aperture and the quarter-wave plate are
respectively given by:

D =

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

 (13)

and

L(ρ) =

 `(ρ) 0 0
0 0

0 0
0 0 `(ρ)

 , (14)

where the usual 2 × 2-Jones matrix of the quarter-wave
plate is:

`(ρ) =[
cos2 ρ eiπ/4 + sin2 ρ e−iπ/4 i

√
2 sin ρ cos ρ

i
√

2 sinρ cos ρ sin2 ρ eiπ/4 + cos2 ρ e−iπ/4

]
·

(15)

We then calculate the matrix M4 to be:

M4 = K


cos(2ρ)t2aeiφ 0 0 sin(2ρ)tatg

0 0 0 0

0 0 0 0

sin(2ρ)tatg 0 0 − cos(2ρ)t2ge−iφ

 , (16)

where K is a complex constant containing propagation
factors common to both arms. By solving equation (3)
using equation (16), one obtains the self-consistent eigen-
vectors E1. By using the upper and lower components, it
follows that the top and bottom powers are finally:

IT = |ETx|2 + |ETy|2 (17a)

IB = |EBx|2 + |EBy|2. (17b)
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It appears here that the powers travelling in both arms
are expected to be dependent on ρ. In order to illustrate
this behavior in a simple way, let us derive the powers
in the two arms when (i) there is no gain nor absorption
(tg = ta = 1) and (ii) C induces no phase shift (φ = 0).
In this case, resolution of equation (3) using equation (16)
yields the simple normalized eigenvectors:

E+
1 =

 sin ρ
0
0

cos ρ

 , (18a)

E−1 =

 cos ρ
0
0

− sinρ

 · (18b)

Hence, two orthogonal forked eigenstates are found. In-
deed, their amplitudes have non vanishing components in
both arms of the laser. In this case, the normalized pow-
ers read IT1 = sin2 ρ and IB1 = cos2 ρ for the first forked
eigenstate, and IT2 = cos2 ρ and IB2 = sin2 ρ for the sec-
ond forked eigenstate. From this cold-cavity analysis, we
can draw the following conclusions: (i) the powers circu-
lating in the two arms of the laser depend strongly on the
rotation angle ρ of the quarter-wave plate, (ii) by pump-
ing only the bottom arm of the laser, only one eigenstate
is expected to oscillate (the one for which IB/IT > 1),
(iii) by placing the absorber on the other arm of the laser,
the oscillating forked eigenstates will have an adjustable
distribution of powers in the gain medium and in the ab-
sorber. We hence expect this cavity to provide an accurate
control of the laser dynamics.

3.1.2 Derivation of the rate equations for the two-axis laser

In order to predict the dynamical behavior of the laser, one
has now to take into account the temporal variations of
the powers, which were calculated in the stationary state
above. These variations lead to variations of the coeffi-
cients of G and of the generalized Jones matrix for the
whole cavity. Thus, the time varying self-consistent con-
dition becomes:

E1

(
t+

2L
c

)
= M4E1(t). (19)

Alternatively, we choose in the following to consider the
intracavity electromagnetic field E2 on mirror M2, i.e., at
the laser output. This field is governed by:

E2

(
t+

2L
c

)
= M′

4E2(t), (20)

where M′
4 = AG2B is the generalized Jones matrix for

one round trip inside the cavity starting from the output
mirror. The Jones 4-vector E2 of the intracavity field on

mirror M2 is given by:

E2 =

 0
0

Ex exp(iϕx)
Ey exp(iϕy)

 · (21)

Note that, owing to the aperture D, the laser intracavity
field on the output mirror M2 may be represented by the
usual Jones 2-vector:

E =
[
Ex exp(iϕx)
Ey exp(iϕy)

]
· (22)

Finally, we use a first-order approximation to write the
electromagnetic field after one round trip inside the cav-
ity as:

E
(
t+

2L
c

)
= E(t) +

2L
c

dE(t)
dt

· (23)

Then the differential equations of evolution of the laser
read:

dEx
dt

=
c

2L
Re {exp(−iϕx)[(M2(t)− 1)E] · x̂} , (24a)

dϕx
dt

=
c

2L
1
Ex

Im{exp(−iϕx)[(M2(t)− 1)E] · x̂}, (24b)

dEy
dt

=
c

2L
Re{exp(−iϕy)[(M2(t)− 1)E] · ŷ}, (24c)

dϕy
dt

=
c

2L
1
Ey

Im{exp(−iϕy)[(M2(t)− 1)E] · ŷ}, (24d)

dnu

dt
= γu(P − nu)− ζ(nu − nd)IT (t)− ζnuε, (24e)

dnd

dt
= γunu − γdnd + ζ(nu − nd)IT (t) + ζnuε, (24f)

da
dt

= γa(a0 − a)− µa IB(t), (24g)

where M2 is the 2 × 2 lower right submatrix of M′
4. IT

and IB are given in equations (17), in which ETx, ETy ,
EBx, and EBy are derived from E1(t) = GBE2(t). The
laser dynamics can be obtained by numerical integration
of equations (24) by using a fourth-order Runge-Kutta
algorithm [22]. The parameters of simulation are shown
in the last column of Table 1.

First, we find theoretically that this laser can indeed
emit a train of Q-switched pulses. A pulse shape is de-
picted in Figure 5 when ρ = 27.5◦. It can be seen that
the phases in the top and bottom arms of the fork vary
during the emission of pulses. This shows that a descrip-
tion based on a time-varying self-consistent condition is
necessary. However, the small phase difference observed
means that the polarization of the two-axis laser pulse re-
mains almost linear. Figure 5 also shows that the ratio
of the powers in the top and bottom arms of the laser is
almost constant during the pulse emission. Moreover, the
model predicts that the Q-switched pulse width and repe-
tition rate varies with ρ. Indeed, when ρ = 45◦, the powers
are expected to be almost identical in the two arms and,
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Fig. 5. Theoretical pulse shapes of the x- and y-polarized com-
ponents of the mode power on the output mirror M2, together
with the phase difference ϕx−ϕy versus time when ρ = 27.5◦.

Fig. 6. (a) Simulation results: squares, pulse width versus ρ;
triangles, pulse period versus ρ. The laser operates in the Q-
switched regime when ρ ≥ 25◦ and in the cw regime when
ρ < 25◦. (b) Corresponding experimental results. The laser
operates in pulsed regime when ρ ≥ 20◦ and in cw regime
when ρ < 20◦.

with the parameter values given in Table 1, the model
predicts a full-width at half-maximum of 110 ns for the
pulses. If now ρ is decreased, we expect the top power IT
to decrease, and hence the pulse width to lengthen (slow
Q-switching regime). The simulation indeed predicts that
the pulse width is stretched from 110 ns to 430 ns when
ρ is decreased from 45◦ to 25◦ [see Fig. 6a]. When ρ is
further decreased from 25◦ to 0◦, the laser is expected to
operate in the cw regime, since the power circulating in
the absorber arm is not high enough to bleach its losses
(at ρ = 0◦, IT = 0). The Q-switch second threshold is
thus predicted to be obtained at ρ = 25◦. In addition, we
obtain from the simulation that, when the pulse width is
lengthened, the repetition rate increases from 10 kHz to

142 kHz [pulse period decreases from 100 µs to 7 µs, as
depicted in Fig. 6a]. This is explained by the fact that
the forked eigenstate benefits from a higher gain when
ρ is low. On the contrary, when ρ = 45◦, it experiences
the lowest gain, hence the highest threshold, yielding the
lowest repetition rate.

3.2 Experimental results

To check these predictions experimentally, we use the
scheme depicted in Figure 4. The active medium is a
1.1-mm long crystal of 1 at.% doped Nd:YAG. The 90-
mm-long resonator is closed by a plane mirror M1, coated
on the active medium, and a 200-mm radius of curva-
ture concave mirror M2, with transmission T2 = 1% at
1 064 nm, which serves as the output coupler. C is a bire-
fringent YVO4 crystal, cut at 45◦ to its optical axis. Both
faces of this crystal are antireflection coated at 1 064 nm.
The saturable absorber is a [001]-cut Cr:YAG crystal. To
avoid nonlinear losses due to the anisotropic saturation of
the absorbing ions [25,26], the [100] axis of this crystal is
aligned with x. The absorber small-signal intensity trans-
mission at 1 064 nm is 90%. We introduce a quarter-wave
plate with anti-reflection coatings on both faces. When
we rotate this phase plate from ρ = 45◦ to ρ = 20◦, we
observe that the pulse width is stretched from 109 ns to
495 ns, and that the repetition rate increases from 8 kHz
to 100 kHz [pulse period decreases from 125 µs to 10 µs,
as depicted in Fig. 6b]. In this whole range, the laser os-
cillates in a single longitudinal mode. The “second thresh-
old” is then witnessed between 25◦ and 20◦, after which
the laser operates in the cw regime (20◦ < ρ < 0◦). These
results, reproduced in Figure 6b, are in fairly good agree-
ment with the simulation. The discrepancy between the
theoretical and experimental values on the second thresh-
old angle is attributed to the fact that the non-saturable
losses are not kept perfectly constant when the quarter-
wave plate is rotated (about 15% variation). Moreover, it
is worth noting that, even if this pulse stretching is ac-
companied by a decrease of the peak power [see Fig. 7a],
the average output power increases monotonously [see
Fig. 7b]. Indeed, in the forked-eigenstate regime, the over-
all gain of the eigenstate is higher for low values of ρ.
Conversely, at ρ = 45◦, approximately half of the forked-
eigenstate power propagates inside the gain medium, lead-
ing to a lower average output power. These results are op-
posite to the ones obtained in single-axis cavity schemes.

4 Discussion and conclusion

We have shown that, provided a solid-state laser with a
given saturable absorber, it is possible to control the emit-
ted pulse length either by changing the focusing condi-
tions in the active media (gain and absorber) or using
forked eigenstates. All these methods rely on the inter-
play of the saturation powers in the active media during
the pulse build-up: when the saturation power of the ab-
sorber is raised and/or the saturation power of the popu-
lation inversion is lowered, then the pulses are lengthened
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Fig. 7. (a) Experimental recordings of six different pulses
for values of ρ from 45◦ to 20◦. The pulse width increases
from 109 ns up to 495 ns while the peak power varies from
7 950 mW down to 400 mW. (b) Experimental average output
power versus pulse width.

and the repetition rate increases. This is obtained in the
three cavity configurations. Among these, the translation
of the absorber inside the cavity seems the simplest pro-
cedure. However, when microchip lasers are considered,
the method based on changing the pump focusing inside
the gain medium gives probably the only possible solu-
tion to adjust the pulse length. Moreover, this method
also applies to short cavity designs as, e.g., two-frequency
lasers for the generation of high-frequency beat notes [26].
But, as in the first case, the average power decreases when
the pulses are lengthened. On the contrary, our forked-
eigenstate laser gives not only the opportunity to turn the
fixed absorber into an adjustable one, but also to have
higher average powers for longer pulses. Furthermore, the
physics of the two-axis forked-eigenstate laser permits to
cross the Q-switching second threshold, having the ability
with a unique cavity geometry to go from cw operation
down to a 100 ns pulse regime, by a simple rotation of
the quarter-wave plate. In agreement with the model, we
hence observe that this forked-eigenstate laser acts as a
laser with an adjustable saturable absorber. Besides this
original physical insight on Q-switching dynamics, this
may find new applications.

In conclusion, we have demonstrated novel methods
to control the pulses in passively Q-switched solid-state
lasers. The pulse width is easily variable in the 20 ns to
500 ns range. Simulations using a rate-equations model
give a good agreement with the experiments performed
on Nd:YAG–Cr:YAG diode pumped lasers.
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